A NOTE ON THE PERFORMER'S CONCEPTION OF SPACE

Abstract

Williams (1976) has drawn attention to the role of the group $Z_{2} \times Z_{2} \times Z_{2}$ in the dancer's conception of space. This note continues the group-theoretical analysis a little further.

Section 1: Geometric Space Versus the Performer's Conception of space.

In this note we consider a very limited part of the performer's conception of space. We consider only directions in space, radiating out from a single fixed point. (Thus we consider only space from the point of view of a stationary performer.) Geometric (mathematical) space recognises infinitely many such directions; an example of a direction is 'I7 degrees left of straight ahead, and inclined upwards at an angle of 23 degrees to the horizontal'. Furthermore, mathematically, no direction is preferred over any other. We write S for the set of geometric directions (s for 'space').

We proceed from this geometrical space to the performer's conception of space in four 'acts'. These acts are acts of choice; they are not dictated by the structure of geometrical space (though they will be consistent with this structure). The choices we make are to reflect the way that a performer conceives space, so they are consequences of human anatomy and psychology. If, for example, we were beings with three legs and a triangular ground-plan, our choices would be very different.

Already in our description of a direction we have referred to the three directions 'left', 'straight ahead' and 'up'. So, our first act is to impose three mutually orthogonal preferred directions.

Our second act recognizes that a performer cannot distinguish among infinitely many different directions; we consider only a finite set of directions. To be specific, we will consider 26 directions, as follows:

U (up)	D (down)
R (right)	L (left)
F (front)	B (back)

Fl (front left), $F R, B L, B R, F U, F D, B U, B D, L U, L D, R U, R D$ FLU (front left up), FLD, FRU, FRD, BLU, BLD, BRU, BRD.

We call this set of 26 directions D. The choice of these 26 directions is not absolute, but covers many practical situations.

Our third act recognises that a direction like RU need not be exactly 45 degrees between R and U. Fe regard the 26 directions listed above as abstract directions or as symbols for directions. (The second and third acts recognise the human predilection to treat similar things as identical.)

A realization of the abstract directions assigns to each abstract direction an actual direction in space. (So a realization is a function from D to S.) We insist that every realization assigns to the symbol u the direction straight up, to the symbol D the direction straight down, and similarly for F, R, B and L. However, we only ask that. a realization assigns to RU a direction somewhere between right and up; one realization might assign to RU the direction inclined upwards 30 degrees from right, and another the direction inclined upwards 50 degrees from right.

So far we have expressed our version of the performer's conception of space as a set of 26 abstract directions, capable of many realizations in geometrical space. However, one more act remains.

Section 2: Introduction of a Symmetry Group.
A symmetry group is a collection of transformations that act on some set. (that is, each transformation is a function from the set to itself.) He consider transformations acting on our set \underline{D} of 26 abstract directions. An example of a transformation is the operation that interchanges up and down. We will call this operation $o_{0 D}$. The effect of $o_{U D}$ on the abstract directions is as follows:

$O_{\text {UD }}(\mathrm{U})=\mathrm{D}$	
$\mathrm{O}_{\mathbf{U d}}$ (R)	
$O_{\text {Ud }}(\mathrm{F})=\mathrm{F}$	
$O_{\text {UD }}(\mathrm{FL})=\mathrm{FL}$	
$O_{U D}(B L)=B L$	
$O_{00}(\mathrm{FU})$	
$\mathrm{O}_{\text {U }}$ (BU)	
$O_{\text {UD }}$ (LU)	
$O_{U D}(\mathrm{RU})=\mathrm{RD}$	
0_{0} (FLU)	
0_{00} (FRU)	
0_{00} (BLU)	
OD	

$O_{U D}(\mathrm{D})=\mathrm{U}$	
$O_{U D}(\mathrm{~L})$	
$O_{\text {UD }}(\mathrm{B})=\mathrm{B}$	
$O_{U D}(\mathrm{FR})=\mathrm{FR}$	
$O_{\text {UD }}$ (BR)	
$O_{\text {UD }}$ (FD)	
$O_{\text {UD }}$ (BD)	
$O_{\text {UD }}$ (LD)	
$O_{U D}(\mathrm{RD})=\mathrm{RU}$	
$O_{\text {OD }}$ (FLD)	
$O_{01}(F R D)=F R U$	
$\begin{aligned} & 0_{50}(\mathrm{BLDLD}) \\ & \mathrm{O}_{5 \mathrm{~m}}(\mathrm{BRD})=\mathrm{BRU} \end{aligned}$	

Two other transformations similar to $o_{U S}$ are $o_{\text {LR }}$, which interchanges left and right, and $O_{\text {PB, }}$ which interchanges front and back. Two transformations can be combined by performing first one and then the other. If we begin with $o_{U p}, o_{L R}$ and $o_{F B}$ and form all possible combinations we end up with elght transformations which together make up a symmetry group we call G_{B}. (This notation will be explained later.) The eight transformations in G_{B} are:

$O_{U D}, O_{L R}, o_{F B}$

the transformation that interchanges both U and D and I and R (leaving F and B unaltered)
the transformation that interchanges both U and D and F and B (leaving L and R unaltered)
the transformation that interchanges both I and R and F and B (leaving U and D unaltered)
the 'central symmetry' that interchanges each direction with its opposite
the identity transformation (which leaves all directions unaltered).

The identity transformation may seem superfluous, but it is needed to ensure that the combination of two transformations in G_{B} is always another transformation in G_{B}. This group is isomorphic to the group $Z_{2} \times Z_{2} \times Z_{2}$ (referred to in Williams [1976] as $K \times K$ x K). Our fourth act is to introduce the symmetry group G_{B} to our description.

The introduction of a symmetry group has two consequences. Firstly, it imposes a notion of 'relatedness' (or. 'being of a similar kind') on the set of abstract directions. We naturally regard U and D as being more closely related than U and $F R$, say. The group G_{B} breaks up the set of 26 abstract directions into small sets called orbits; two abstract directions are in the same orbit if there is a transformation in G_{B} that takes one direction to the other. The orbits of D under G_{B} are:

$\{\mathrm{U}, \mathrm{D}\}$	$\{\mathrm{R}, \mathrm{I}\}$	$\{\mathrm{F}, \mathrm{B}\}$
$\{\mathrm{FL}, \mathrm{FR}, \mathrm{BL}, \mathrm{BR}\}$	$\{\mathrm{FU}, \mathrm{FD}, \mathrm{BU}, \mathrm{BD}\}$	$\{\mathrm{IU}, \mathrm{ID}, \mathrm{RU}, \mathrm{RD}\}$

\{FLU , FLD , FRU , FRD , BLU , BLD , BRU, BRD \}
We will regard two abstract directions as related if they are in the same orbit under G_{B}.

Secondly, the symmetry group affects the realizations of the abstract directions as actual directions. The transformation $O_{u d}$, acting on D, has a counterpart which acts on the set S of actual directions by interchanging up and down; $o_{U d}$ is the reflection in the horizontal plane through the fixed point from which the directions radiate. Similarly, each of the other transformations in G_{B} has a counterpart which is a transformation of S. The set of all these counterparts forms a group we call H_{B}. H_{B} is the group of symmetries of a rectanqular box (with depth, width and height all different); the subscript B in the notations G_{B} and H_{B} stands for 'box'. The eight transformations in H_{B} are (listed in the order corresponding to the list above of the transformations in G_{B}):
the reflection in the horizontal plane (williams [1976] "transverse plane")
the reflection in the sagittal plane (dividing right from left)
the reflection in the coronal plane (dividing front from back)
rotation 180 degrees about the front-back axis
rotation 180 degrees left-right axis
rotation 180 degrees about the up-down axis
the reflection in the central point (interchanging each direction with its opposite)
the identity transformation (leaving all directions unaltered).
(H_{B} is isomorphic to G_{B} and to $Z_{2} \times Z_{2} \times Z_{2}$.)
We ask that 'realizations have the symmetry of the rectangular box'. Precisely: If r : \underline{S} is a realization and d is an abstract direction, then $r\left(o_{u p}(d)=v_{0}(r[d])\right.$, and similarly for each of the other transformations in G_{B} and its counterpart in H_{B}. This means that if $r(F U)$ (that is, the realization of $F U$) is inclined upwards at 30 degrees to the horizontal, then $r(B U)$ must also be inclined upwards at 30 degrees and $r(F D)$ and $r(B D)$ must both be inclined downwards at 30 degrees. Roughly speaking, the angles of inclination of the realizations of abstract directions in the same orbit must be equal.

Our version of the performer's conception of space is now a set of 26 abstract directions acted on by the group $Z_{2} \times Z_{2} \times Z_{2}$.

This set of directions has many realizations in geometrical space, but we insist that any such realization has the symmetry of the rectangular box.

The description just given explicates the appearance of the group $Z_{2} \times Z_{2} \times Z_{2}$ in Williams (1976); this group appears as a group of transformations acting on both our set of 26 abstract directions, and on the infinite set of actual directions in space; the two actions are related through the allowable realizations.

Section 3: Refinements.

The analysis in the previous section accounts for what Williams says about $Z_{2} \times Z_{2} \times Z_{2}$. However, it is interesting to see if we can proceed further. We indicated that the orbits impose a notion of 'relatedness' on D such that, for example, $L U$ and LD are related, but $L U$ and $F U$ are not, and neither are $L U$ and FLU. However, we feel that $L U$ and $F U$ are somewhat related, more so than LU and FLU. We will proceed by considering other groups. We regard the analysis of section 2 as basic, so we insist that any group considered contains $\mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ (that is, contains the three fundamental transformations $o_{W D} o_{L R}$ and $o_{F B}$).

The choice of groups is very limited: in fact, there are only three (Coxeter [1969], Chapter 15, has a complete list of the finite symmetry groups). As transformations of S the three groups are:
the group of symmetries of a square prism;
the group of symmetries of an octagonal prism;
the group of symmetries of a cube.
We call these groups respectively $H_{S P}, H_{o p}$ and Fi_{C}; the corresponding groups of symmetries of \underline{D} we call $G_{s p}, G_{o p}$ and G_{C}. (This continues the notation G_{B} and H_{B} used in section 2.) These groups are related as follows:

Here the presence of a line joining two groups means that the upper group is contained in the lower.

Although there are only three available groups, in the case of $G_{S p}$ and $G_{p p}$ we do have a further choice, namely the direction of the main axis of symmetry. It is natural to choose this axis to be vertical, and we do so.
$\underline{\underline{D} \text { and } G_{S P} \text { is a group containing } 16 \text { transformations. The orbits of }}$
$\{\mathrm{U}, \mathrm{D}\}$
$\{F, L, B, R\}$
\{FU,FR,BL,BR\}
$\{F U, F D, L U, L D, R U, R D, B U, B D\}$
\{FLU, FLD, FRU, FRD, BLU, BLD, BRU, BRD\}
We could call two elements of D strongly related if they are in the same orbit under G_{B}, and weakly related if they are in different orbits under G_{B}, but in the same orbit under $G_{\text {sp }}$. Thus LU and LD are strongly related, $L U$ and $F U$ are weakly related, and LU and FLU are not related at all (neither strongly related nor weakly related). This seems in accord with our intuition. The group $G_{S P}$ introduces rotations of 90 degrees in the horizontal plane.

Introducing one of the groups $G_{o p}$ or G_{c} amounts to introducing a notion of 'very weakly related'. We consider $G_{o p}$ first.
$G_{o p}$ is a group containing 32 transformations. The orbits of D under $G_{o p}$ are:

```
{U,D}
{F,FL,I, BL,B,BR,R,FR}
{FU,FD,LU,LD,RU,RD,BU,BD,FLU, FLD,FRU,FRD,BLU, BLD,BRU,BRD}
```

This seems a plausible notion of 'very weakly related'. The eight horizontal directions in D are all lumped together by $G_{O p}$; the group $G_{o p}$ introduces rotations of 45 degrees in the horizontal plane.
G_{c} is a group containing 48 transformations. The orbits of D under G_{c} are:
$\{F, L, B, R, U, D\}$
\{FU, FD , FL , FR, LU ,LD , RU , RD , BU, BD , BL , BR \}
\{FLU, F'LD , FRU, FRD , BLU , BLD , BRU, BRD \}
At first sight this also looks promising as a notion of 'very weakly related' (evidently different from that associated with $G_{o p}$). However, G_{c} contains transformations that are definitely not
part of the performer's conception of space. One of them (which I will call is the following:

$(\mathrm{F})=\mathrm{U}$	(U) $=\mathrm{L}$	(L) $=\mathrm{F}$
(B) $=\mathrm{D}$	(D) $=R$	$(\mathrm{R})=\mathrm{B}$
(FU) $=\mathrm{LU}$	(LU) $=\mathrm{FL}$	$(F L)=F U$
(RD) $=\mathrm{BR}$	$(\mathrm{BR})=\mathrm{BD}$	$(\mathrm{BD})=\mathrm{RD}$
(RU) $=\mathrm{LB}$	$(\mathrm{LB})=\mathrm{FD}$	$(F D)=R U$
$(\mathrm{BU})=\mathrm{LU}$	$(L D)=R F$	$(\mathrm{RF})=\mathrm{BU}$
(FLD) = FRU	(FRU) $=$ BLU	$(\mathrm{BLU})=\mathrm{FLD}$
$(\mathrm{BRU})=\mathrm{BlD}$	$(\mathrm{BLD})=\mathrm{FRD}$	$(F R D)=B L U$
(FLU) = FLU	$(\mathrm{BRD})=\mathrm{BRD}$	

This transformation corresponds to the rotation of the cube about 120 degrees through the axis joining the corners FLU and BRD. It is a fact that if one holds a cube by two diagonally opposite corners and rotates it by 120 degrees, the cube will be superimposed on its original position. So a cube has three-fold symmetry about the axis joining two opposite corners. This threefold symmetry is something of a surprise to many people, and doesn't correspond to anything in the performer's conception of space. For this reason we can exclude G_{c} from consideration.

This means that there is only one natural notion of 'very weakly related' on our set of abstract directions, namely, that determined by $G_{o p}$.

Section 4: Conclusion.
It is not reasonable to expect a complete mathematical description of the performer's conception of space. At most we can expect to model what are generally felt to be the most important features, and there may indeed be disagreement about what the most important features are.

The model presented here includes the following:
Only a finite number of directions are distinguished.
The approximate character of many of these directions is taken into account by the introduction of 'abstract directions'.

The basic role of the three fundamental oppositions up/down, left/right and front/back is recognised by requiring the three transformations $o_{U D}, o_{I R}$ and $o_{F B}$ to be included in the symmetry groups we consider.

The introduction of a symmetry group enables us to consider some abstract directions as more closely related than others.

The introduction of further groups in section 3 achieves two things: it introduces a hierarchy of degrees of relatedness on the abstract directions, and it is a step towards allowing for the fact that we may have different needs at different times: for example, if we need to consider exact 45 degrees rotations in the horizontal plane, we should work with $G_{o p}$. In other words, the perceived symmetry of the space may change; since a symmetry group is the mathematical expression of symmetry, our symmetry group should change accordingly.

The choice of 26 abstract directions in section 1 constrains the available symmetry groups to those considered in section 2 and section 3. A different choice of abstract directions would allow the use of different symmetry groups. However, human anatomy accounts for the importance of the oppositions up/down/ left/right and front/back, and makes the set of 26 abstract directions used in this paper a natural choice.

The starting point of this paper was as follows: The group $Z_{2} \times Z_{2} \times Z_{2}$ is clearly important in Williams (1976), but is not presented there as a group of transformations. However, a symmetry group should appear as a group of transformations; the question raised is 'transformations of what'? The answer given in this paper is that $Z_{2} \times Z_{2} \times Z_{2}$ in fact appears in two different guises as a transformation group: firstly, acting on the set D of abstract directions, and secondly, acting on the set s of geometric directions. (These two guises are called respectively G_{B} and H_{B} in section 2.) The link between the two guises of $Z_{2} \times Z_{2} \times Z_{2}$ is the requirement that realizations of abstract directions have the syminetry of the rectangular box.

It is not claimed that this paper represents the last word on the subject. For example, in section 3 we chose the axis of symmetry of $G_{S F}$ to be vertical. The fact that this is a natural choice indicates that the three fundamental transformations $o_{U D}$, $O_{L R^{\prime}} O_{F B}$ are not all on the same footing; $O_{0 D}$ is perhaps less fundamental than the other two. We could then consider symmetry groups containing $o_{L R}$ and $o_{F B}$ but not $o_{U D}$. This would extend the hierarchy of symmetry groups used in the model.

G.P. Monro
University of Sydney
Department of Pure Mathematics

Acknowledgement

I am very grateful to Dr. Drid Williams for introducing me to this subject, and for a chance to present this material to her postgraduate seminar in the Department of Music, University of sydney.

REFERENCES CITED
Coxeter, H.S.M. 1979. Introduction to Geometry, second Edition. New York: Wiley.

Williams, D. 'Deep Structures of the Dance'. II. Journal of Fuman Movement Studies (1976)3:155-181.

